1. 操秀英. 我國(guó)首個(gè)百萬(wàn)噸級(jí)碳捕集利用與封存項(xiàng)目建成. http://stdaily.com/index/kejixinwen/202201/c0fd940b482f472cbb3d31d7ab062b47.shtml (2022).
2. 齊魯石化公司. 關(guān)于對(duì)齊魯分公司二氧化碳回收利用項(xiàng)目試生產(chǎn)公示. http://qlsh.sinopec.com/qlsh/news/com_notice/20220413/news_20220413_571773855884.shtml (2022).
3. Ritchie, H., Roser, M. & Rosado, P. CO? and Greenhouse Gas Emissions. Our World in Data https://ourworldindata.org/co2/country/china (2020).
4. Peplow, M. The race to upcycle CO2 into fuels, concrete and more. Nature 603, 780–783 (2022).
5. Lux Research. The Emergence of a Carbon Economy. https://www.luxresearchinc.com/the-emergence-of-a-carbon-economy-executive-summary (2021).
6. IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. P?rtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. (2018).
7. IRENA. Global Renewables Outlook: Energy transformation 2050. https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020 (2020).
8. IEA. Energy Technology Perspectives 2020 – Analysis. https://www.iea.org/reports/energy-technology-perspectives-2020 (2020).
9. IEA. Net Zero by 2050: a Roadmap for the Global Energy Sector. https://www.iea.org/reports/net-zero-by-2050 (2021).
10. 蔡博峰,李琦,張賢 等. 中國(guó)二氧化碳捕集利用與封存 (CCUS) 年度報(bào)告 (2021)——中國(guó) CCUS 路徑研究. (2021).
11. 國(guó)家發(fā)展和改革委員會(huì). 中華人民共和國(guó)國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展第十四個(gè)五年規(guī)劃和2035年遠(yuǎn)景目標(biāo)綱要. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202103/t20210323_1270124.html?code=&state=123 (2021).
12. Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nature Clim Change 7, 243–249 (2017).
13. de Kleijne, K. et al. Limits to Paris compatibility of CO2 capture and utilization. One Earth 5, 168–185 (2022).
14. Zhou, Y. et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science 373, 315–320 (2021).
15. Yu, C. et al. Selective capture of carbon dioxide from humid gases over a wide temperature range using a robust metal–organic framework. Chemical Engineering Journal 405, 126937 (2021).
16. IEA. Reuse: carbon reuse. https://www.cceguide.org/wp-content/uploads/2020/08/04-IEA-Reuse.pdf.
17. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).
18. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal 5, 388–396 (2022).
19. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).
20. Global CCS Institute. Technology Readiness and Costs of CCS. 50 (2021).
21. IEA. Direct Air Capture 2022. https://www.iea.org/reports/direct-air-capture-2022 (2022).
22. Ravikumar, D. et al. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat Commun 12, 855 (2021).
23. Madhu, K., Pauliuk, S., Dhathri, S. & Creutzig, F. Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nat Energy 6, 1035–1044 (2021).
24. Cruz, T. T. da et al. Life cycle assessment of carbon capture and storage/utilization: From current state to future research directions and opportunities. International Journal of Greenhouse Gas Control 108, 103309 (2021).